from langchain_core.tools import tool
from deepagents import create_deep_agent
from langgraph.checkpoint.memory import MemorySaver
@tool
def delete_file(path: str) -> str:
"""Delete a file from the filesystem."""
return f"Deleted {path}"
@tool
def read_file(path: str) -> str:
"""Read a file from the filesystem."""
return f"Contents of {path}"
@tool
def send_email(to: str, subject: str, body: str) -> str:
"""Send an email."""
return f"Sent email to {to}"
# Checkpointer is REQUIRED for human-in-the-loop
checkpointer = MemorySaver()
agent = create_deep_agent(
model="claude-sonnet-4-5-20250929",
tools=[delete_file, read_file, send_email],
interrupt_on={
"delete_file": True, # Default: approve, edit, reject
"read_file": False, # No interrupts needed
"send_email": {"allowed_decisions": ["approve", "reject"]}, # No editing
},
checkpointer=checkpointer # Required!
)